Spaces of Piecewise Linear Manifolds
نویسنده
چکیده
In this thesis we introduce a ∆-set Ψ d (R )• which we regard as the piecewise linear analogue of the space Ψd(R ) of smooth d-dimensional submanifolds in R introduced by Galatius in [4]. Using Ψ d (R )• we define a bi-∆-set Cd(R )•,• whose geometric realization BC d (R ) = ∥∥Cd(RN )•,•∥∥ should be interpreted as the PL version of the classifying space of the category of smooth d-dimensional cobordisms in R , studied in [7], and the main result of this thesis describes the weak homotopy type of BC d (R ) in terms of Ψ d (R )•, namely, we prove that there is a weak homotopy equivalence BC d (R ) ' ΩN−1|ΨPL d (R )•| when N − d ≥ 3. The proof of the main theorem relies on properties of Ψ d (R )• which arise from the fact that this ∆-set can be obtained from a more general contravariant functor PL → Sets defined on the category of finite dimensional polyhedra and piecewise linear maps, and on a fiberwise transversality result for piecewise linear submersions whose fibers are contained in R × (−1, 1)N−1 ⊆ R . For the proof of this transversality result we use a theorem of Hudson on extensions of piecewise linear isotopies which is why we need to include the condition N − d ≥ 3 in the statement of the main theorem. Resumé I denne afhandling introducerer vi en ∆-mængde Ψ d (R )• som vi betragter som den stykkevis lineære analog til rummet Ψd(R ) af glatte d-dimensionale delmangfoldigheder i R introduceret af Galatius i [4]. Ved at benytte Ψ d (R )• definerer vi en bi-∆-mængde Cd(R )•,• hvis geometriske realisationBC d (R ) = ∥∥Cd(RN )•,•∥∥ bør fortolkes som PL versionen af det klassificerende rum for kategorien af glatte d-dimensionale kobordismer i R , studeret i [7], og afhandlingens hovedresultatet beskriver den svage homotopitype af BC d (R ) ved hjælp af Ψ d (R )•, nemlig, vi beviser at der findes en svag homotopiækvivalens BC d (R ) ' ΩN−1|ΨPL d (R )•| n̊ar N − d ≥ 3. Beviset for hovedsætningen bygger p̊a egenskaper ved Ψ d (R )•, som stammer fra at denne ∆-mængde kan udledes fra en mere generel kontravariant funktor PL → Sets defineret p̊a kategorien af endelig dimensioanle polyeder og stykkevis linære afbildninger, og p̊a et fibervist transversalitetsresultat for stykkevis linære submersioner hvis fibre er indeholdt i R × (−1, 1)N−1 ⊆ R . I beviset af dette transversalitetsresultat benytter vi en sætning af Hudson om isotopiudvidelser, hvilket er grunden til at vi er nødt til at inkludere betingelsen N − d ≥ 3 i formuleringen af hovedsætningen. SPACES OF PIECEWISE LINEAR MANIFOLDS
منابع مشابه
Non-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملDiscrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds
Consider a manifold constructed by identifying the boundaries of Euclidean triangles or Euclidean tetrahedra. When these form a closed topological manifold, we call such spaces piecewise flat manifolds (see Definition 1) as in [8]. Such spaces may be considered discrete analogues of Riemannian manifolds, in that their geometry can be described locally by a finite number of parameters, and the s...
متن کاملSpaces of Piecewise Linear Manifolds
In this thesis we introduce a ∆-set Ψ d (R )• which we regard as the piecewise linear analogue of the space Ψd(R ) of smooth d-dimensional submanifolds in R introduced by Galatius in [4]. Using Ψ d (R )• we define a bi-∆-set Cd(R )•,• whose geometric realization BC d (R ) = ∥∥Cd(RN )•,•∥∥ should be interpreted as the PL version of the classifying space of the category of smooth d-dimensional co...
متن کاملKNOTTED CONTRACTIBLE 4-MANIFOLDS IN S4 W.B.R. Lickorish
A construction will here be described that can produce a compact contractible 4-manifold M embedded piecewise linearly (or smoothly) in S4 with the fundamental group of its complement being nontrivial. Then, another embedding of M in S4 will be produced which has simply connected complement. Several examples of this will be given. Of course, the construction emphasizes that contractible spaces ...
متن کاملTriangulating and Smoothing Homotopy Equivalences and Homeomorphisms . Geometric Topology Seminar
We will study the smooth and piecewise linear manifolds within a given homotopy equivalence class. In the first part we find an obstruction theory for deforming a homotopy equivalence between manifolds to a diffeomorphism or a piecewise linear homeomorphism. In the second part we analyze the piecewise linear case and characterize the obstructions in terms of a geometric property of the homotopy...
متن کاملManifolds of Piecewise Linear Maps and a Related Normed Linear Space
1. Spaces of piecewise linear maps. Let X and Y be separable polyhedra, X compact and Y locally compact; for the moment let them be connected and of dimension > 0 . Denoting the separable hilbert space of square-summable sequences by h, a space is an kmanifold if separable, metrizable and locally homeomorphic to k. In [4] the author showed that the space C(X, Y) of all continuous maps from X to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015